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A filter construction technique is presented for enhanced defect identification in rotary

machine systems. Based on the generalized harmonic wavelet transform, a series of sub-

frequency band wavelet coefficients are constructed by choosing different harmonic

wavelet parameter pairs. The energy and entropy associated with each sub-frequency

coefficients whose corresponding sub-frequency band has the maximum energy-to-

entropy ratio. Experimental studies using rolling bearings that contain different types of

structural defects have confirmed that the developed new technique enables high

signal-to-noise ratio for effective machine defect identification.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advancement of miniaturized sensor design and wireless data communication has led to an increasing number
of sensors to be installed on machine systems and civil structure for comprehensive and timely gathering of data to
monitor the condition of the system in real-time. High quality data acquisition requires both proper sensor placement
(such that sensor locations provide for adequate coverage of signal features while minimizing structural repercussion
[1,2]), and effective extraction of characteristic features from the sensor data to reliably diagnose the current working state
of the system [3,4]. Of the various signals commonly analyzed for monitoring and diagnosis purposes (e.g. vibration,
acoustic emission, temperature, force and torque variations), vibration signals measured from a machine contain rich
physical information about the condition status of the machine. Proper analysis of such signals is a critical prerequisite for
clear identification of the hidden defect and timely diagnosis of potential machine failure [5,6].

As a signal analysis tool, the wavelet transform (WT) has the ability to provide both the time domain and the frequency
domain information of the signal simultaneously through a series of convolution operations between the signal being
analyzed and the base wavelet under different scaling parameters. Such adaptivity makes it better suited for analyzing
non-stationary signals [7,8], which is often encountered in rotary machines such as seen in vibrations measured on
machine tools during the metal removing process [9], as compared to the commonly used spectral analysis technique. Of
the various types of wavelets developed over the past decades, the harmonic wavelet possesses compact frequency
expression [10], thus can be efficiently implemented through a pair of Fourier and inverse Fourier transform operations.
Such feature made it well suited for dynamic modeling of the Burgers equation [11], non-linear partial differential equation
solutions [12], heart rate variability analysis [13], particle shape pattern recognition [14], image denoising [15], and surface
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electromyographic (EMG) signal classification [16]. An overview of applying harmonic wavelet transform for vibration
signal analysis was provided in [17], and examples have included vibration analysis of buildings [17], beam structure [18],
rotary machines [19], rotor rig testing systems [20,21], helicopter gearbox [22], and rolling bearings [23].

In addition to efficient algorithm implementation, which has attracted significant efforts from various researchers, the
harmonic wavelet can also be considered as an ideal signal filter, because of its box-shaped spectrum characteristic (i.e. the
magnitude of the spectrum is zero except for a certain range of frequency components) [10]. Such characteristic motivates
this study, which is focused on the filtering aspect of the harmonic wavelet. Specifically, a harmonic wavelet filtering
approach for enhanced defect identification in rotary machines has been developed. After introducing the theoretical basis
of the harmonic wavelet transform in Section 2, the approach using the energy-to-entropy ratio criterion for tuning the
parameter pair of the harmonic wavelet filter is discussed in Section 3. Then a synthetic signal based on impulse response
of a rolling bearing is formulated to evaluate the performance of the presented wavelet filter. Section 4 describes
experimental studies of rolling bearings that contain different types of structural defects to evaluate the filtering
technique. Finally, conclusions are drawn in Section 5.

2. Theoretical framework

The wavelet transform decomposes a signal x(t)onto a time-scale plane through a series of convolution operations
between the signal and a selected base wavelet [8]:

aðs; tÞ ¼ jsj�1=2

Z1
�1

xðtÞc t�t

s

� �
dt (1)

where cð�Þ is the complex conjugate of the scaled and shifted base wavelet cð�Þ. Given that the convolution operation in
one domain equals point-wise multiplication in another domain [24], a(s,t) in Eq. (1) can be alternatively calculated as

aðs; tÞ ¼ F�1fAðs; f Þg ¼ jsj1=2F�1fXðf ÞCðsf Þg (2)

where X(f) and Cð�Þ denote the Fourier transform of x(t) and cð�Þ, respectively. The symbol F�1 denotes the inverse Fourier
transform. Fig. 1 illustrates the calculation procedure of wavelet transform.

Of the various wavelets developed over the past decades, the harmonic wavelet is characterized by the simplicity of its
expression in the frequency domain, defined as [25,26]

Cm;nðf Þ ¼

1

n�m
mr f on

0 else where

8<
: (3)

Here the parameter pair (m, n) specifies the lower and upper cutoff frequencies of the frequency band defined by the
harmonic wavelets, instead of the scale parameter s as commonly used in Eqs. (1) and (2). Furthermore, the symbols m and
n are both real but not necessarily integers, thus can be used to define an arbitrary frequency band, in which the center
frequency fC and bandwidth fBW of the harmonic wavelet are defined as

fC ¼ ðmþnÞ=2

fBW ¼ n�m

(
(4)

Correspondingly, the harmonic wavelet expression in time domain is expressed as

cm;nðtÞ ¼
ejn2pt�ejm2pt

j2pðn�mÞt
(5)
x(t) t = 1,2,...N ( / )t sψ t = 1,2,...N

X(f) f = 1,2,...N ( )sf f = 1,2,...N

( , ) ( ) ( )A s f X f sf=

a(s, t), t = 1,2,...N
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Fig. 1. Procedure of wavelet transform.
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Fig. 2 illustrates the harmonic wavelet with two exemplary parameter pairs (0.5, 1.5) and (2, 3), in which the bandwidth
and magnitude are same for the two parameter pairs. It is seen that through variation of the center frequency and
bandwidth, the harmonic wavelet can be scaled to match a signal in different frequency regions, thus realizing the function
of signal filtering.

Eq. (5) implies the phase difference between the real part of the harmonic wavelet and its imaginary part is equal to 901.
This means the phase of a signal remains unchanged after the harmonic wavelet transform of the signal was performed. As
an example, when the signal x(t)=cos(2pf1t+y) is decomposed by a harmonic wavelet transform, the wavelet coefficients:

aðm;n; tÞ ¼ jn�mj1=2F�1fXðf ÞCm;nðf Þg ¼ jn�mj1=2F�1 p½e�iydð2pf þ2pf1Þþeiydð2pf�2pf1Þ�
1

n�m

� �
¼

eið2pf1tþyÞ

4pjn�mj1=2
(6)

have the same phase y as that of the original signal. Such property makes the harmonic wavelet an ideal band-pass filter.
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To illustrate the functionality of the harmonic wavelet as an ideal filter, a schematic diagram of modified band-pass
filtering is given in Fig. 3.

As shown in Fig. 3, after taking the Fourier transform of the signal x(t) to obtain its frequency expression X(f), a band-
pass filtering operation (the magnitude of the ideal band-pass filter is ð1=2Þð1=ðn�mÞÞ, and the pass-band is mr |f|rn) is
performed to obtain the filtered signal spectrum Abf(m,n,f), which can be expressed as

Abf ðm;n; f Þ ¼
1

2p

Z 1
�1

abf ðm;n; tÞe
�j2pft dt¼

Xðf Þ
1

2

1

n�m
; mr jf jon;

0; otherwise

8<
: (7)

In Eq. (7), abf(m,n,t) is the filtered signal resulting from the ideal band-pass filtering operation. By suppressing
magnitude of the negative frequency components to zero and multiplying magnitude of the positive frequency
components by 2, the result A(m,n,f) can be expressed as

Aðm;n; f Þ ¼
2Abf ðm;n; f Þ; f Z0;

0; f o0

(

¼
Xðf Þ

1

n�m
; f Z0;

0; f o0

8<
: (8)

This is equivalent to the coefficients of the harmonic wavelet transform in the frequency domain. Taking the inverse
Fourier transform of A(m,n,f) results in:

aðm;n; tÞ ¼

Z 1
�1

Aðm;n; f Þej2pft df ¼

Z 1
0

2Abf ðm;n; f Þ e
j2pft df

¼

Z 1
0

2
1

2p

Z 1
�1

abf ðm;n; tÞ e�j2pft dt
� �

ej2pft df

¼
1

p

Z 1
0

Z 1
�1

abf ðm;n; tÞ ej2pf ðt�tÞ dtdf (9)

It is noted that
R1

0 ej2pft df ¼ pdðtÞþ j=t, where d(t) is the delta function. Accordingly, Eq. (9) can be expressed as

aðm;n; tÞ ¼ abf ðm;n; tÞþ
j

p

Z 1
�1

abf ðm;n; tÞ
t�t dt¼ abf ðm;n; tÞþ jH½abf ðm;n; tÞ� (10)

where H½�� represents the Hilbert transform operation. Eq. (10) indicates the real part of a(m,n,t) is the filtered signal of an
ideal band-pass filtering operation. This means that an ideal band-pass filter can be realized through harmonic wavelet
transform, making it an effective tool for noises suppression and feature extraction.

3. Harmonic wavelet filtering

When a structural defect occurs on the surface of a rotary machine component, defect-induced resonant vibration (which is
non-stationary in nature and within high frequency region) will be generated and mixed with those from other vibration
sources. To improve the signal-to-noise ratio for effective defect identification, vibration signals need to be filtered first before
analyzed. As presented above, the harmonic wavelet transform provides an effective tool for this purpose. Theoretically, the
center frequency of the harmonic wavelet derived from the selected parameter pair (m, n) should match that of the defect-
related vibration, in order to best extract the defect features out of the measured vibration signal. It follows that a harmonic
wavelet filter can be constructed by tuning the parameter pair (m, n). In this study, a criterion that accounts for the energy-to-
entropy ratio of the harmonic wavelet coefficients is proposed to achieve effective signal filtering.

3.1. Parameter tuning criterion

The energy content of a vibration signal measured on a rotary machine is directly related to the degree of severity of the
defect condition. Thus energy can be utilized as a measure for selecting the parameter pair (m, n). The amount of energy
contained in the signal x(t) is calculated as

Eenergy ¼
XN

t ¼ 1

jxðtÞj2 (11)

where N is the length of the signal measured by the number of data points, and |x(t)| is the amplitude of the signal. Based
on the Parseval theory, the energy content of the signal can also be calculated from its wavelet coefficients expressed as

Eenergy ¼
X
m;n

XN

t ¼ 1

jaðm;n; tÞj2 (12)
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Eq. (12) indicates that the energy associated with a particular parameter pair (m, n) can be quantified as

Eenergyðm;nÞ ¼
XN

t ¼ 1

jaðm;n; tÞj2 (13)

Given that for the same amount of energy associated with a particular parameter pair, the specific condition of the
signal may be different (e.g., a spectrum with few concentrated frequency components of high magnitudes vs. a
widespread spectrum), the spectral distribution of the energy needs also to be considered to ensure effective extraction of
the defect-related vibration. The energy distribution of the wavelet coefficients is quantitatively described by the Shannon
entropy as [27]

Eentropyðm;nÞ ¼ �
XN

i ¼ 1

pi log2 pi (14)

where pi is the energy probability distribution of the wavelet coefficients, defined as

pi ¼
jaðm;n; iÞj2

Eenergyðm;nÞ
(15)

with
PN

i ¼ 1 pi ¼ 1, and pi log2 pi ¼ 0 if pi ¼ 0.
Eqs. (14) and (15) indicate that the entropy of the wavelet coefficients is bounded by

0rEentropyðm;nÞr log2 N (16)

where Eentropy(m,n) will be equal to
(1)
 Zero, if all other wavelet coefficients are equal to zero except for one wavelet coefficient, or

(2)
 log2 N, if the probability of energy distribution for all the wavelet coefficients are the same, i.e. 1/N.
This leads to the conclusion that the lower the entropy value is, the higher the energy concentration will be. As a result,
the energy and Shannon entropy content of a signal’s wavelet coefficients can be used to tune the parameter pair for
construction of the wavelet filter. The selected parameter pair should guarantee that the maximum amount of energy of
the defect-related vibration can be extracted while minimizing the Shannon entropy of the corresponding wavelet
coefficients. A combination of the energy and Shannon entropy content of a signal’s wavelet transform coefficients,
denoted as energy-to-entropy ratio, is thus designed as

rðm;nÞ ¼ Eenergyðm;nÞ

Eentropyðm;nÞ
(17)

where the energy Eenergy(m,n) and the entropy Eentropy(m,n) are calculated using Eqs. (13) and (14), respectively.
Accordingly, the parameter pair can be selected by maximizing the energy-to-entropy ratio r(m,n), which leads to the
following criterion

Maximum energy-to-entropy ratio criterion: The parameter pair (m, n), whose corresponding wavelet coefficients has
produced the maximum energy-to-entropy ratio, should be chosen to construct the wavelet filter for defect-related feature
extraction.

Based on the above criterion, the procedure for realizing the harmonic wavelet filtering algorithm is shown in Fig. 4.
Specifically, the input signal is first decomposed by the harmonic wavelet transform, and a series of wavelet coefficients
with different parameter pairs were obtained. The corresponding energy and Shannon entropy content for each parameter
pair are then calculated to formulate the energy-to-entropy ratio matrix. The parameter pair, whose corresponding
wavelet coefficients possess the highest energy-to-entropy ratio, is subsequently chosen to construct the wavelet filter.

Theoretically, any parameter pair (m, n) can be chosen as the potential candidate for constructing the harmonic wavelet
filter, as long as the condition 0omonr fs/2 is met, where fs is the data sampling rate. This translates into a total of
C2

N=2 ¼ ðN=2ÞððN=2Þ�1Þ=2 parameter pairs, with N being the total number of data points. For each pair of Fourier and inverse
Fourier transforms, the total number of operations needed can be calculated as 8N log2(N) [28]. When the energy-to-
entropy ratio criterion is applied to conducting an exhaustive search through all the possible parameter pairs of (m, n),
significant computational cost may result. Specifically, the magnitude of the computational complexity can be
approximated using the big O notation as O(N3log2(N)) [29]. In practical applications, such computational complexity
may be reduced to O(N2log2(N)) when a fixed bandwidth (n�m) is chosen. Such a reduction leads to a decrease of the
number of parameter pairs from (N/2)(N/2�1)/2 to (N/2�1). As an example, for bearing defect identification,
the frequency range can be reduced from [0, fs/2] to [10frev/min, fs/2] Hz, where frev/min is the shaft rotating speed and fs

is the sampling rate. The lower bound of 10frev/min Hz is chosen to minimize influence from the shaft harmonics, unbalance,
and misalignment. The bandwidth of the harmonic wavelet is generally fixed at about 10 times of the defect-induced
repetitive frequency fd to ensure enough signal energy to be covered in the filtered signal. This requires that the selection of
parameter pair should satisfy the condition of (n�m)=10fd, leading to a decrease of the parameter pairs. It should be noted
that the initial condition parameters (e.g., frequency range [10frev/min, fs/2], and bandwidth 10fd) can be obtained from the
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rotating speed and geometry of the bearing. Once the initial condition parameters are determined, the selection of
parameter pair (m, n) for harmonic wavelet filter construction can be performed automatically without intervention from
the user.

3.2. Numerical evaluation

To evaluate the performance of the presented harmonic wavelet filtering technique, a synthetic signal was first
constructed from the actual impulse response of a bearing test system, with additive white noise. Fig. 5 illustrates three
impulse responses of a ball bearing (model 2214) from an impact test, with the sampling frequency being 20 kHz.
The dominant frequency component of the signal was identified to be 3242 Hz. This frequency component was considered
as one of the intrinsic frequency components existing in the bearing test system, and would be excited by bearing
defect-related impacts.
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Given the cyclic nature of vibration signals associated with the rotary machine, the impacts occur on the bearing at a
constant time interval. The impact-induced vibrations can be modeled as xðtÞ ¼

P
iAidðt�iTÞ � hðtÞ [30], where the symbol

� denotes convolution operation, Ai represents the magnitude of the ith impulse. The interval T between the two
consecutive impulses is determined by the rotating speed and geometry of the test bearing. The term h(t) is the impulse
response of the bearing test system, as shown in Fig. 5. By adding the white noise, which emulates other structural-borne
vibration and environmental noise, a synthetic signal y(t) simulating the actual bearing vibration signal was generated as
y(t)=x(t)+e(t) with e(t) being the noise. The procedure on how the synthetic signal was constructed is shown in Fig. 6.
In this study, the bearing was assumed to have a localized defect on the outer raceway (i.e. Ai is a constant) and runs at
600 rev/min. This means 16 defect-induced impacts will be generated per revolution, which translates into an impulse
response interval T of 12.5 ms, or an impact repetition frequency of 80 Hz.

Fig. 7 illustrates the synthetic signal corrupted by the white noise, with the signal-to-noise ratio being �12 dB.
Harmonic wavelet transform was applied to the signal over the frequency range [100, 10,000] Hz with the bandwidth of
the harmonic wavelet being selected as 800 Hz. Then the energy-to-entropy ratios at different center frequencies were
calculated. The results shown in Fig. 8 indicates that the harmonic wavelet with center frequency at 3240 Hz and
bandwidth at 800 Hz have produced the highest energy-to-entropy ratio. Based on Eq. (5), the corresponding parameter
pair (2840, 3640) Hz was thus chosen to construct the wavelet filter to analyze the synthetic signal. The filtered signal is
illustrated in Fig. 9, and the impulse responses with 12.5 ms time interval were clearly identified, confirming the
effectiveness of the harmonic wavelet filtering.

To evaluate the effectiveness of the harmonic wavelet filter, the synthetic signal was also processed using the
traditional band-pass filter. Of various types of band-pass filters (i.e., Butterworth, Chebyshev, and elliptic, etc.), the
Butterworth filter was chosen, since it is designed to have a frequency response as flat as possible in the pass-band [31].
This leads to a higher level of similarity with the harmonic wavelet filter than other types of filters. Fig. 10 illustrates the
filtered results using Butterworth filter at order 6, which has the same bandwidth as that of the harmonic wavelet filter.
It is seen that the impact interval of 12.5 ms was also identified when the bandwidth of the Butterworth filter was chosen
Synthetic Signal

Data Sampling

Data Accumulation
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T T T

Fig. 6. Procedure of synthetic signal formulation.
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Table 1
Comparison results under different SNRs.
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Fig. 11. Signal measured from a type 6220 ball bearing.
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appropriately. To quantitatively compare the two filtering techniques, the signal-to-noise ratio of the filtered signal was
calculated. It was found that the harmonic wavelet filter provided a higher signal-to-noise ratio (�3.8 dB) than that of the
Butterworth filter (�4.5 dB). This is because the Butterworth filter only separates signals within the pass-band from the
rest of other frequency band components, while the harmonic wavelet filter can further improve the signal-to-noise ratio
within the pass-band by its nature of operation, i.e., extracting the impulsive vibration component while simultaneously
suppressing other components within the pass-band.

To evaluate the robustness of the harmonic wavelet filtering technique, additional synthetic signals with different
signal-to-noise ratios were constructed and processed. The results shown in Table 1 demonstrate that harmonic wavelet
filtering technique provides consistently better performance than the traditional band-pass filtering technique.

4. Experimental verification

The harmonic wavelet filtering technique was further evaluated experimentally using realistic signals measured from
bearings with localized defects. Details are described below.

4.1. Inner raceway defect identification

The first experiment was conducted on a ball bearing (type 6220, outer diameter 180 mm) with a 0.25 mm hole on its
inner raceway. The bearing was run at 740 rev/min, and vibration was measured by an accelerometer at the sampling
frequency of 10 kHz, as shown in Fig. 11.

Applying the harmonic wavelet transform to the signal decomposed it into different sub-frequency bands. Then the
energy-to-entropy ratio for each of the sub-frequency bands was calculated. As shown in Fig. 12, the sub-frequency band
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with the center frequency at 800 Hz possesses the highest energy-to-entropy ratio. Subsequently, the corresponding
parameter pair (400, 1200) Hz was chosen to construct the harmonic wavelet filter. The waveform of the filtered signal is
shown in Fig. 13, where an impact interval of 13.8 ms was identified. Such an interval matches the fBPFI=72.3 Hz frequency
characteristics, thus reveals the existence of the inner raceway defect.

This conclusion was verified by the enveloping spectrum of the filtered vibration signal as shown in Fig. 14. It is also
noted that frequency components at 60 and 84.6 Hz were also identified in Fig. 14, which reflects upon the combined effect
of bearing rotation (12.3 Hz) and structural defect (72.3 Hz).

For purpose of comparison, another parameter pair (800, 1600) Hz of the harmonic wavelet was used to filter the
bearing vibration signal. Although the impact interval of 13.8 ms (Fig. 15) could be identified from the filtered signal, the
defect pattern was not as clear as that shown in Fig. 13. This is verified by its corresponding enveloping spectrum as shown
in Fig. 16, where the magnitude (2.28 mW) of the 72.3 Hz frequency characteristics is lower than that (2.93 mV) shown in
Fig. 14. It thus demonstrated the effectiveness of the parameter tuning criterion for designing the harmonic wavelet filter.

4.2. Outer raceway defect identification

The second experiment was conducted on a different bearing (Type N205) with a 0.1 mm diameter hole on its outer
raceway, The bearing was tested under 1200 rev/min, and the sampling frequency was 20 kHz. As shown in Fig. 17, it is
difficult to identify any defect pattern from the raw vibration signal.
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Fig. 15. Filtered results of the bearing vibration signal with harmonic wavelet parameter pair of (800, 1600) Hz.
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Fig. 19. Filtered results of the bearing vibration signal with harmonic wavelet parameter pair of (2540, 3540) Hz.
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Fig. 20. Filtered results of the bearing vibration signal with harmonic wavelet parameter pair of (8240, 9240) Hz.
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Fig. 21. Enveloping spectrum of the filtered bearing vibration signal with harmonic wavelet parameter pair of (2540, 3540) Hz.
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The signal was then analyzed using the harmonic wavelet transform, from which the energy-to-entropy ratio at each of
the sub-frequency bands was calculated. As shown in Fig. 18, there are two peaks of energy-to-entropy ratio identified at
3040 and 8740 Hz, respectively. Accordingly, two harmonic wavelet filters can be constructed with the parameter pairs
being (2540, 3540) and (8240, 9240) Hz, respectively.

Comparing the filtering results obtained from each of the filters—Fig. 19 from the (2540, 3540) Hz pair and Fig. 20 from
the (8240, 9240) Hz pair, it is evident that the (2540, 3540) Hz pair cannot identify any repetitive signal patterns, while the
(8240, 9240) Hz pair, which is associated with the highest energy-to-entropy ratio, was able to identify the signal
repetition interval of 9.5 ms, which matches the fBPFO=105 Hz frequency characteristics of the outer raceway defect. As a
result, the existence of the outer raceway defect is identified.

This observation is consistent with the enveloping spectrum corresponding to each of the frequency pairs. No defect
frequency of fBPFO=105 Hz is shown to be identified in Fig. 21, which corresponds to the (2540, 3540) Hz pair. In
comparison, it is clearly identified in Fig. 22, corresponding to the (8240, 9240) Hz pair.

5. Conclusions

A harmonic wavelet transform-based filtering technique is developed for denoising vibration signals measured from
rotary machines. Statistical characteristics (i.e. energy and entropy) of the wavelet coefficients are utilized as the basis for
selecting the best suited harmonic wavelet parameter pair (m, n). The new scheme is computationally efficient, as the
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Fig. 22. Enveloping spectrum of the filtered bearing vibration signal with harmonic wavelet parameter pair of (8240, 9240) Hz.
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harmonic wavelet transform can be implemented through a compact algorithm based on a pair of Fourier and inverse
Fourier transforms. In addition to computational efficiency, the harmonic wavelet filter has also demonstrated better
performance than the traditional band-pass filters. A synthetic signal was formulated to quantitatively evaluate the
effectiveness of the harmonic wavelet filter, and the result was experimentally verified, by using two different rolling
bearings with different type of structural defects. Research is being continued to analyze vibration signals from other
rotary machine components, with the aim to establish a systematic approach to rotary machine defect identification.
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